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• Combining changes in transportation, pro-
duction and household behavior is key to
assess pandemic’s impact on air pollution.

• Pandemic-induced changes in activity
levels and household energy choices
could increase residential emissions.

• Global PM2.5-related mortality under a
persisting pandemic would be higher
when including residential emission
changes.

• The least affluent regions would suffer the
highest fractional economic losses with no
comparable mortality reduction.
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Pandemics greatly affect transportation, economic and household activities and their associated air pollutant emis-
sions. In less affluent regions, household energy use is often the dominant pollution source and is sensitive to the afflu-
ence change caused by a persisting pandemic. Air quality studies on COVID-19 have shown declines in pollution levels
over industrialized regions as an immediate response to pandemic-caused lockdown and weakened economy. Yet few
have considered the response of residential emissions to altered household affluence and energy choice supplemented
by social distancing. Here we quantify the potential effects of long-term pandemics on ambient fine particulate matter
pollution (PM2.5) and resulting prematuremortality worldwide, by comprehensively considering the changes in trans-
portation, economic production and household energy use. We find that a persisting COVID-like pandemic would re-
duce the global gross domestic product by 10.9 % and premature mortality related to black carbon, primary organic
aerosols and secondary inorganic aerosols by 9.5%. The global mortality decline would reach 13.0% had the response
of residential emissions been excluded. Among the 13 aggregated regions worldwide, the least affluent regions exhibit
the greatest fractional economic losses with no comparable magnitudes of mortality reduction. This is because their
weakened affluence would cause switch to more polluting household energy types on top of longer stay-at-home
time, largely offsetting the effect of reduced transportation and economic production. International financial, techno-
logical and vaccine aids could reduce such environmental inequality.
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1. Introduction

Human beings are at risk of newly or re-emerging infectious diseases
due to climate change (Watts et al., 2018; Huber et al., 2020; Hueffer
et al., 2020), and the occurrence of pandemics similar to COVID-19 is
very likely in the future (Marani et al., 2021). The COVID-19 is a reminder
that the global economy and environment are susceptible to sudden disrup-
tions by pandemics. Coping with a pandemic means lockdown, economic
downturn and household behavioral changes, which together affect emis-
sions and ambient levels of air pollution. Indeed, since COVID-19 was de-
clared as a pandemic (World Health Organization (WHO), 2020), many
studies have shown evidence of reductions in emissions and pollution levels
over industrialized regions (Lee et al., 2020; Mahato et al., 2020; Forster
et al., 2020; Keller et al., 2021), and that changes in meteorological condi-
tions and nonlinear chemistry may complicate the response of ambient pol-
lution to the pandemic (Shen et al., 2021; Le et al., 2020; Hammer et al.,
2021; Li et al., 2021; Huang et al., 2021; He et al., 2020). These studies
have focused on the environmental effects of weakened transportation
and economic activities as an immediate, short-term response within a
few weeks or months of the start of the pandemic. Yet few have considered
the changes in household affluence level and respective energy choice as a
result of economic recession, especially in less affluent regions, when a pan-
demic persists for years.

Household fuel combustion for heating and cooking is the dominant
source of air pollution over less industrialized regions (Tao et al., 2018;
Lelieveld et al., 2015; Yun et al., 2020; Chen et al., 2018; Mbandi, 2020).
Thus accounting for the changes in household energy use is important to re-
veal the full picture of the environmental impacts of a pandemic. First, lock-
downmeans people stay at home for a longer period and require more fuels
for heating and cooking (Kikstra et al., 2021; Elavarasan et al., 2020; Hook
et al., 2020; Google, 2020), which tend to enhance residential emissions.
Furthermore, when a pandemic lasts and the economy remains weakened,
household income and financial capability will be cut substantially. Espe-
cially for less affluent regions, lowered affluencemeans undermined afford-
ability to cleaner energy sources (electricity and gas) and forced switch to
cheaper butmore polluting fuels (biomass and coal). A change in household
fuel structure ismuch easier than that for factories in terms of time and cost.
For example, many stoves in the rural households can burn different fuels;
and many rural households in China possess both gas- and coal-fired
burners, suited for a swift switch (Tao et al., 2018; Chen et al., 2018). A
field study of a Chinese village has shown increased residential coal con-
sumption and resulting PM2.5 pollution during the COVID-19 lockdown pe-
riod (Li et al., 2021). However, a quantitative global analysis of the
combined environmental effects of changes in economic activity and house-
hold behavior caused by lasting pandemics remains lacking.

The enduring pandemics' environmental impacts and corresponding
health consequences might exacerbate environmental inequality across
various regions. Environmental inequality has gained increasing attention
from both researchers and policymakers in recent years. Existing literature
on air pollution has highlighted a disproportionate burden of environmen-
tal pollution borne by minorities and low-income groups, which adversely
affects their health (Zhang et al., 2018; Szasz and Meuser, 1997; Williams
and Collins, 1995; Mackenbach et al., 1997; Lake, 1996). This situation
may be worsened under a lasting pandemic because these residents in
less affluent regions tend to use more polluting but cheaper energy as
their incomes decrease. Thus, a quantitative analysis of inter-regional envi-
ronmental equality under lasting pandemics is necessary.

Here we assess the potential effects of a persisting pandemic on ambient
PM2.5 pollution and associated premature mortality worldwide, by consid-
ering the emission changes associated with transportation, economic pro-
duction and residential energy use. Briefly, we use an economic model
(Burniaux and Truong, 2002) to simulate the economic changes in response
to a persisting pandemic. We estimate the affluence-driven changes in
household energy consumption by using historical energy data (Boden
et al., 2017; Fernandes et al., 2007; British Petroleum Company, 2019;
International Energy Agency (IEA), 2016), and consider the lockdown-
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induced variations in household activity and transportation mobility
based on recent real-world statistics (Shen et al., 2021; Google, 2020;
Apple, 2020). These data are combined with emission inventory data
(McDuffie et al., 2020) to estimate the pandemic's effect on pollutant emis-
sions, which are subsequently translated to ambient PM2.5 concentrations
using chemical transport model simulations (Chen et al., 2021; Lin et al.,
2019; GEOS-Chem v11-01, 2017). Finally, we employ a health model
(Burnett et al., 2018) to calculate premature mortality due to long-term ex-
posure to ambient PM2.5 (Chen et al., 2021; Lin et al., 2019). Our findings
demonstrate that the residential response to a persistent pandemic leads
to a significant escalation of inter-regional environmental inequality.

2. Materials and method

2.1. Framework

The framework of our methodology and the detailed emission calcu-
lation process are depicted in Fig. 1. To calculate emission changes
under a persisting pandemic, we apply different types of perturbations
to individual sectors based on their unique characteristics. For this
purpose, we categorize the sectors into four main groups, including
transportation (private and commercial), residential (resulting from
household fuel combustion and electricity usage), agriculture, and in-
dustry (which includes power generation to support industrial produc-
tion) (Supplementary Table 1).

As shown in Fig. 1, we use the Global Trade Analysis Project – Energy
(GTAP-E) model (Burniaux and Truong, 2002) to simulate the effect of a
persisting pandemic on the economy and fuel use in GDP-producing sec-
tors. For residential energy, we use the historical data (Boden et al., 2017;
Fernandes et al., 2007; British Petroleum Company, 2019; International
Energy Agency (IEA), 2016) to construct statistical relationships between
energy use and affluence for each region, and apply these relationships to
the pandemic scenario. We also account for enhanced residential activity
during lockdown due to lengthened stay at home. For transportation, we
consider the effect of lockdown on mobility change as well as the impact
of economic production changes on commercial transportation. We apply
the emission factor/intensity data based on the IEA energy data
(International Energy Agency (IEA), 2016), GTAP economic database
(GTAP v10a Data Base, 2019) and CEDSGBD-MAPS emission inventory
(McDuffie et al., 2020) in the pandemic scenario to obtain respective emis-
sions for each region, pollutant type and sector.We employ the GEOS-Chem
chemical transport model-derived chemical efficiency metrics (Chen et al.,
2021; Lin et al., 2019; GEOS-Chem v11-01, 2017) to convert pollutant
emissions to ambient concentrations for individual PM2.5 compositions. Fi-
nally, we use the Global Exposure Mortality Model (GEMM) (Burnett et al.,
2018)model to estimate the effect of PM2.5 pollution changes on premature
mortality.

We focus on a lasting pandemic similar to COVID-19 in terms of severity
and socioeconomic responses (but not in terms of duration, see next para-
graphs). In this way, we take advantage of the COVID-19 data to constrain
model calculations, including mobility data from Google (Google, 2020),
Apple (Apple, 2020) and Gaode Map (Gaode, 2020), socioeconomic statis-
tics from CEIC (CEIC dataset, 2022), the International Labor Organization
(ILO) (International Labor Organization (ILO), 2021) and the National Bu-
reau of Statistics of China (NBSC) (National Bureau of Statistics of China
(NBSC), 2021), and near-surface PM2.5 concentration data from a
satellite-based dataset (Hammer et al., 2021; Van Donkelaar et al., 2016)
and ground stations (The World Air Quality Index Project (WAQI), 2022).
We consider the changes in emissions of black carbon (BC), primary organic
aerosols (POA) and those gases leading to secondary inorganic aerosols
(SIOA), including sulfur dioxide (SO2), nitrogen oxides (NOx) and ammo-
nia (NH3). Following our previous studies (Lin et al., 2019; Du et al.,
2020), countries are aggregated into 31 regions for economic simulations
and emission calculations, and further into 13 regions for subsequent calcu-
lations of ambient pollution levels and associated mortality; see regional
definitions in Supplementary Fig. 1.



Fig. 1. Methodological framework of this study. The left part presents the framework of the whole study. The right part shows the steps to calculate emission changes in
individual sectors under the pandemic scenario.
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2.2. Pandemic scenarios

We design two scenarios to estimate the effect of a lasting pandemic.
The BASE scenario does not include any pandemics. Here, the economic,
energy, emission data and model are based on 2014, which is the latest
year with all necessary information available.

The COVID-like scenario denotes a persistent pandemic scenario that
mirrors the severity and socioeconomic countermeasures implemented dur-
ing the first COVID-19 period (the first quarter of 2020 for China and the
second quarter for other regions). Nofiscal stimuli are included.We assume
that the lockdown and other socioeconomic measures remain in place for
approximately one year to achieve a new global economic equilibrium
state. It is important to note that this duration differs from the actual lock-
down period observed during the COVID-19 pandemic.

We consider reductions in labor force, capital and international trade as
exogenous shocks to the economy. We collect real employment and gross
fixed capital formation data (fixed asset investment for China, due to data
limitation) covering over 200 countries in the first COVID-19 period from
the CEIC (CEIC dataset, 2022), ILO (International Labor Organization
(ILO), 2021) and NBSC (National Bureau of Statistics of China (NBSC),
2021), and then aggregate the data into 31 regions as our shocks setup in
GTAP-E. For trade, we assume the same magnitude of increase in trade
cost (2.2 % for goods and 6.6 % for services) for all regions, following pre-
vious studies (Arriola et al., 2021). The economic effect of trade restrictions
is smaller compared with those of labor and capital changes in pandemic
cases (Lin et al., 2019; Arriola et al., 2021). Supplementary Table 2 shows
the detailed shock settings in GTAP-E for 24 sectors in 31 regions. In addi-
tion, we consider the effects of lockdown and weakened economy on trans-
portation, as well as the change in residential activity level as people are
required to stay at home. We collect Google (Google, 2020), Apple
(Apple, 2020) and Gaode Map (Gaode, 2020) mobility data during the
first COVID-19 period to design shocks on transportation mobility and res-
idential activity level (Supplementary Table 3). We also consider affluence-
driven changes in residential fuel types.

2.3. The GTAP-E model

We use the GTAP-E to simulate the economic effects and fuel consump-
tion changes of production sectors under a persistent pandemic. The GTAP-
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Emodel is an energy-environmental extension of the standardGTAPmodel,
which is a multiregion, multisector, computable general equilibrium (CGE)
model (Burniaux and Truong, 2002). After a long history of improvements,
CGE is one of the best approaches to analyze economic influences of disas-
ters, new policies and other events. Many studies have used GTAP
(Walmsley et al., 2021; Verikios et al., 2016; Verikios et al., 2011) and
other CGE models (Dixon et al., 2010; Prager et al., 2017) to assess the eco-
nomic impacts of pandemics or epidemics. More detailed descriptions
about GTAP-E model can be found in Supplementary methods.

The latest version (v10a) of the GTAP database (GTAP v10a Data Base,
2019), which is constructed from the input–output tables of 141 countries
and regions across the world with a base year of 2014, is used to build
the GTAP-E model in this study. The GTAP database contains 65 sectors
and 5 primary production factors. For this study, the 141 countries and re-
gions have been aggregated to 31 regions following our previous studies
(Lin et al., 2019; Du et al., 2020). The 65 production sectors are aggregated
to a total of 24 sectors (Supplementary data Table 1). Among the 24 sectors,
one is the transportation sector,five are agricultural sectors and the remain-
ing 18 are industrial sectors.

2.4. Processing emissions

For all scenarios, natural emissions follow our previous studies (Lin
et al., 2019; Du et al., 2020). For anthropogenic emissions, the BASE sce-
nario directly uses the CEDSGBD-MAPS inventory in the year 2014 for all pol-
lutant types. The CEDSGBD-MAPS inventory is a newly established global
emission dataset for 7 pollutants from9 fuel types, 57 sectors and 222 coun-
tries/regions (McDuffie et al., 2020).More descriptions about the inventory
can be found in Supplementary methods. Here we map the 222 regions of
CEDSGBD-MAPS to 141 regions in the original setup of GTAP-E (Supplemen-
tary data Table 2), and then to 31 aggregated regions to be consistent
with the scenario design.

The land transportation sector in CEDSGBD-MAPS contains the emissions
of both commercial and private vehicles. Commercial vehicles are affected
both by direct lockdownmeasures and the changes in economic production
(simulated in GTAP-E). Private vehicles are affected only by the direct lock-
down measures. Therefore, we separate emissions of private vehicles from
commercial transportation, following the method elsewhere (Lin et al.,
2019; Du et al., 2020).
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Similarly, the electricity sector in CEDSGBD-MAPS does not separate emis-
sions associated with residential and industrial use. Residential electricity
use can change under changed household affluent level and the “stay-at-
home” policy, which may be different from the change in industrial elec-
tricity use. We regard residential electricity use as part of residential activ-
ities that lead to emissions. We extract the emissions associated with
residential electricity use from total electricity-related emissions based on
the IEA electricity dataset (International Energy Agency (IEA), 2016). The
IEA dataset distinguishes electricity consumption by different types of end
use (residential, industrial, etc.). For each region, we assume the fraction
of residential use to total electricity use to be the residential contribution
to total electricity-related emissions. The IEA statistics only covers 85 re-
gions. Thus for a region with no IEA data, the average fraction over its ad-
jacent neighbor regions is used. Supplementary Table 4 shows the
fractional contributions of residential electricity in our 31 aggregated re-
gions.

Thus, the emissions associatedwith residential activities include the res-
idential electricity-related emissions and the emissions in the original
CEDSGBD-MAPS residential sector (due to fuel combustion for heating and
cooking).

For non-residential sectors, we first map the 56 sectors in CEDSGBD-MAPS

to the 65 sectors in the original GTAP-E setup, and then to 24 sectors in our
economic shocks setup. The detailed mapping tables are shown in Supple-
mentary data Tables 1 and 3.

2.5. Anthropogenic pollutant emissions for COVID-like scenario

The process of determining anthropogenic emissions in the COVID-like
scenario involves the utilization of scenario-specific fuel consumption (or
sector outputs) and prescribed emission factors (or emission intensities),
which are based on 2014 data (i.e., the BASE scenario).

For the 18 industrial sectors, emissions are derived from scenario-
dependent fuel consumption from GTAP-E and unchanged emission factors
based on the CEDSGBD-MAPS inventory and energy data. GTAP-E contains
three main fossil fuel types (coal, oil and natural gas). CEDSGBD-MAPS con-
tains emissions fromnine fuel types; and for the industrial sectors and trans-
portation, most emissions (72% for BC, 93% for NOx, 41% for POAand 78
% for SO2) are due to combustion of the three fossil fuel types. Therefore,
we first aggregate the nine fuel types into five (coal, oil, natural gas, bio-
mass and process). Then for each pollutant, region and industrial sector,
we allocate the biomass- and process-related emissions to individual fossil
fuels, based on the relative contribution of each fuel type to the total fuel-
related emissions. Next, we derive a dataset of emission factors for each pol-
lutant type and fossil fuel type in each of the 18 sectors and 31 regions as
the ratio of the respective emissions of 2014 from the CEDSGBD-MAPS inven-
tory divided by the fuel consumption from the IEA energy data. Subse-
quently, we multiply these emission factor data by the GTAP-E calculated
fuel consumption to derive the emissions for individual pollutant types, fos-
sil fuel types, sectors and regions.

For the five agricultural sectors, few fossil fuels are consumed. Thus we
assume the fuel structure to be unchanged under the pandemic shocks. For
both fuel and non-fuel (especially for NH3) sources, we follow our previous
studies (Lin et al., 2019; Du et al., 2020) to use the constant emission inten-
sities (i.e., emission per unit monetary output) and GTAP-E outputs to cal-
culate anthropogenic emissions under the COVID-like scenario.
Specifically, we derive the sector-, region-, and pollutant-specific emission
intensities by dividing the emissions of 2014 from the CEDSGBD-MAPS inven-
tory by the outputs from the GTAP database.

For emissions related to transportation, we adopt the percentage
changes in route requests from driving during the first COVID-19 period
from the Apple Maps Mobility Trend Report (Apple, 2020) as the emission
changes for private vehicles. The Apple Report includes 57 countries and
takes January 13, 2020 as the baseline. We aggregate data from these re-
gions into 31 regions. The Apple mobility dataset does not contain China,
for which country data from the national driving activity index of Gaode
Map Travel Report 2020 (Gaode, 2020) are used. For other transportation
4

emissions (commercial land transport, air transport and water trans-
port), we choose as perturbation the larger value of the following two
aspects: 1) the GTAP-E simulated economy-driven change in energy
consumption for transportation, and 2) the mobility index changes
from Apple/Gaode.

As discussed above, residential emissions in this study are contributed
by residential electricity use and household fuel combustion. We aggregate
the nine fuel types for household fuel combustion in CEDSGBD-MAPS into four
(biomass, coal, oil and natural gas); there are no process-related emissions
in this sector. Emissions from residential electricity is regarded as another
energy type (electricity) here, thus there are totally five energy types in
the residential sector. Treatments of residential emissions differ between
high-income (per capita gross national income exceeds $12,696 in 2020),
middle-income (between $1046 and $12,695) and low-income ($1045 or
below) regions; the definition of different affluence groups follows the clas-
sification from World Bank and United Nations (United Nations (UN),
2022).

In high-income regions, residential emissions related to energy use
(electricity and fuels) are relatively small in BASE. They contribute about
1.4 %–16.7 % of total emissions for most pollutants and 50.1 % for POA.
For these high-income regions, we employ the percentage change in resi-
dential activity level during the first COVID-19 period based on Google
COVID-19 CommunityMobility Report (Google, 2020) as a reference to ad-
just residential emissions. The Google Report includes 114 countries and
takes the median value from the 5-week period over January 3–February
6, 2020 to be the baseline to account for the day-of-week effect. We aggre-
gate these regions into 31 regions. The Google mobility data does not in-
clude China, thus we take the national time spent indoors changes from
Shen et al. (Shen et al., 2021) as our reference. Directly using the value of
relative mobility change to adjust residential emissions might lead to an
overestimate, because a certain amount of household energy will be con-
sumed nomatter people stay at home or go towork. Thuswe apply a scaling
factor of 0.5 to the mobility change data before using them to calculate res-
idential emission changes.

For middle- and low-income regions, residential energy use is a major
emission source. In addition, residential energy structure may change sig-
nificantly with the affluence level. This effect is accounted for here by ap-
plying the historical relationship between affluence and residential
energy use. For this purpose, we collect GDP and population data from
2000 to 2014 from two UN datasets. The UN GDP dataset contains 211 re-
gions and the population dataset contains 231 regions, which are mapped
to 31 regions to construct per capita GDP as the indicator of affluence.
We then fit the historical relationship between per capita GDP and per
capita energy consumption for each of the five energy types (electricity,
biomass, coal, oil and natural gas) in each region. The fitting is linear or
quadratic depending on the characteristics of each region and energy type
(Supplementary Fig. 2). Thefitted relationships are then applied to the pan-
demic scenario to obtain residential energy consumption in response to the
pandemic-affected affluence level. Residential activity level changes based
onGoogle mobility data/Shen et al. and the scaling factor (0.5) are then ap-
plied on top of these energy-specific consumption data to account for the
impacts of stay-at-homepolicies. Finally, energy consumption data aremul-
tiplied by energy-specific emission factors to obtain residential emissions
under the COVID-like scenario.

2.6. Ambient PM2.5 and related premature deaths

To estimate ambient PM2.5 concentrations for each scenario, we further
aggregate the 31 regions to 13 regions, and apply chemical efficiencies (i.e.
annual mean ambient concentration per unit emission) to the emissions in
each scenario. The chemical efficiency data have been established by Lin
et al. (Lin et al., 2019) and tested in several studies (Chen et al., 2021; Lin
et al., 2019; Du et al., 2020) as a low-cost, robust approach to estimate
PM2.5 concentration. We use region- and pollutant-specific chemical effi-
ciency data to calculate SIOA (from emissions of NOx, SO2 and NH3), BC
and POA.
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We compare the calculated total PM2.5 (from all compositions including
SIOA, BC, POA, SOA, dusts and sea salts) in BASE with the satellite-derived
PM2.5 data from van Donkelaar et al. (Van Donkelaar et al., 2016). The
population-weighted PM2.5 concentrations show good consistency between
the two datasets, with R2 ranging from 0.74 to 1.0 and normalized mean
bias from 0.5 % to 10 % across the 13 regions (Supplementary Fig. 3). We
further use the biases in BASE to construct scaling factors for each region,
and adjust the PM2.5 concentrations in each pandemic scenario to eliminate
the systematic error, following our previous studies (Lin et al., 2019; Du
et al., 2020).

We employ the GEMM model (Burnett et al., 2018) to estimate prema-
ture deaths due to long-term exposure to ambient PM2.5. The GEMM
method addresses many limitations of previous Integrated Exposure-
Response (IER) model (Burnett et al., 2018). Both GEMM and IER consider
five individual causes of mortality, including ischemic heart disease, stroke,
chronic obstructive pulmonary disease, lung cancer, and lower respiratory
infections. GEMM offers another accounting method combining all
noncommunicable diseases and lower respiratory infections (LRIs), which
is used in ourmain text (referred to as GEMMNCD+LRI). The detailed cal-
culation process can be found in our previous study (Lin et al., 2019). In
order to assess the impact of using differentmethods, we conduct a compar-
ative analysis for 13 individual regions under two scenarios based on
GEMM 5COD (based on five individual causes), GEMM NCD + LRI and
IER. The results are presented in Supplementary data Tables 4 and 5. Sup-
plementary data Table 6 compares our global mortality estimates in the
BASE scenario (which represents the actual situation in 2014) with those
reported by Burnett et al. (Burnett et al., 2018). Our results show a slight
difference of 22 %, which is consistent with the findings of Lin et al. (Lin
et al., 2019) (20 %). The difference is attributable to our use of an updated
version of baseline mortality data and a grid cell-based calculation ap-
proach. Specifically, we compute the mortality for each discrete grid cell
by considering their respective PM2.5 concentrations, rather than applying
the national mean PM2.5 concentration.

2.7. Uncertainty estimates

The uncertainties of our study come from a few sources. First, the
GTAP-E model simulates the economic states at equilibrium rather than
the dynamic economic evolution. The model parameters and structure
also contain uncertainties to various extents. We change six main parame-
ters by ±50 % to quantify the uncertainties related to model parameters.
Globally, the 50 % changes cause the GDP change by −0.17 % to 0.04 %
(Supplementary data Table 7), suggesting that the simulation results are ro-
bust to parameter variation. We also compare the modeled economic
changes under the COVID-like scenario with the actual statistics for the
first COVID-19 period. The results show slight differences (globally 0.12
%), indicating good model performance.

Second, estimates of air pollutant emissions are affected by errors in
emission factors and activity data, as discussed in detail for CEDSGBD-MAPS

(McDuffie et al., 2020). Emission errors for 13 regions are estimated in pre-
vious studies (Lin et al., 2016; Zhang et al., 2017). For scenario-dependent
PM2.5 concentrations and health impact calculations, the emission errors
are implicit in the derivation of σ4 below.

Third, we assume that for a given pollutant, region, sector and fuel type,
the emission factor remains unchanged for all scenarios, and for the agricul-
tural sectors, the emission intensity for a given pollutant, region and sector
remains unchanged. This may lead to an additional uncertainty in the cal-
culated emissions for the pandemic scenarios, which is assumed to be σ1 ¼
5% (one standard deviation).

Fourth, we adopt the statistical relationships fitted from historical data
to calculate residential energy consumption caused by economic downturn
in middle- and low-income regions. We use the normalized root-mean-
square deviation (NRMSD) between the fitted results and the actual per
capita fuel consumption data over 2000–2014 to represent the overall
fitting errors for each region and energy type. For high-income regions,
we assume the residential energy structure remains unaffected by the
5

pandemic, and assume the associated error to be 10%. The error is referred
to as σ2 (one standard deviation).

Fifth, we use the statistics for the changes in residential activity and
transportationmobility for the first COVID period to adjust/scale emissions
of the residential and transportation sectors. This activity-level-based ad-
justment might introduce uncertainty in the calculation of emissions. This
uncertainty source is referred to as σ3 (one standard deviation) with an as-
sumed value of 20 %.

Sixth, there are two uncertainty sources with respect to the use of chem-
ical efficiencies. One error source is from imperfect GEOS-Chem simula-
tions to construct the chemical efficiencies, and is referred to as σ4 (one
standard deviation). The other error source is related to the application of
chemical efficiencies to each pandemic scenario, and is referred to as σ5
(one standard deviation). Following our previous studies (Lin et al., 2019;
Du et al., 2020), we use the NRMSD between calculated and satellite-
derived population-weighted PM2.5 concentrations as σ4 and assume
σ5 ¼ 15%.

Seventh, the uncertainty associated with GEMM pollution exposure-
response calculations is represented by 95 % CI of the mortality results by
changing the GEMM model parameters. This error, when expressed as
one standard deviation, is referred to as σ6. Although there may be syner-
gistic health effects of the virus and the PM2.5 pollution (Wu et al., 2020;
Conticini et al., 2020), these synergistic effects are not accounted for here
due to lack of concrete evidence (Walton et al., 2021).

The overall uncertainty in premature deaths for each pandemic scenario
is estimated as the sum in quadrature of the above error terms. Errors are
expressed as 95 % CI in the main text. Although σ4 and σ6 are major
sources of uncertainty, they are subject to causes that do not depend on
the scenario. Thus, σ4 and σ6 are not relevant when discussing the relative
change in premature mortality from one scenario to another.

3. Results and discussion

3.1. Economic response to a persisting pandemic

We first assess the economic effect of a persisting COVID-like pandemic
using the GTAP-E model. We consider three main exogenous variables of
the modeled economy perturbed by the pandemic, including labor, capital
and trade cost. We focus on the economic responses without fiscal stimuli.
During the lockdown time, many industries are closed and people are
forced to stay at home for social distancing, leading to a dramatic reduction
in labor working hours (Organization, 2020). Capital investment is reduced
due to a worsened economic prospect (UNCTAD, 2020). Trade restrictions
are also strengthened in order to reduce virus spread (UNCTAD, 2020). The
GTAP-E model results show that due to the pandemic, the global gross do-
mestic product (GDP) declines by 10.9 %, of which 10.2 % is caused by the
decreases in capital and labor together.

There are substantial inter-regional differences in the simulated eco-
nomic impacts of the pandemic (Fig. 2a). Here we aggregate the economic
results of 31 regions into 13 regions to be consistent with the following en-
vironmental analysis. In general, less affluent regions tend to suffer larger
fractional economic losses than more affluent regions do. For example,
the GDP declines in South Asia (24.8 %) and Sub-Sahara Africa (18.9 %)
are much larger than those in the United States (10.9 %) and Oceania
(Australia and New Zealand, 5.7 %). This is mainly because the economic
systems of less affluent regions tend to bemore fragile and subject to larger
capital losses caused by the pandemic (Supplementary Table 2).

There are uncertainties in the economic simulation related to model
structure and parameters. We quantify the uncertainties by conducting
two sensitivity tests including sixmain parameters: elasticity of substitution
in value-added-energy subproduction, capital-energy subproduction, en-
ergy subproduction, non-electricity energy subproduction and non-coal en-
ergy subproduction, and Armington CES for domestic/imported allocation.
Increasing or decreasing the parameters by 50 % caused the global GDP to
change by −0.17 % to 0.04 %, with the highest percentage change
observed in India (−2.19 % to 0.76 %). Results and tests are detailed in



Fig. 2. Economic and environmental impacts of a persisting COVID-like pandemic. Thefigure shows the GDP, anthropogenic pollutant emissions, population-weighted PM2.5

concentrations and related premature deaths in 13 regions with and without the COVID-like pandemic. Here, PM2.5 concentrations and related premature deaths are
contributed by anthropogenic SIOA, BC and POA. For some regions, results are scaled for better presentation, with the scaling factors indicated on the top of the bars
denoting the no pandemic case. Error bars denote the uncertainty ranges (95 % CI) due to the assumption of unchanged emission factor/intensity, the statistical
calculation of affluence-related residential energy use, and the use of mobility data and chemical efficiencies; common error sources among different scenarios are not
included here. The black points denote the percentage changes. Thirteen regions include China (CH), rest of East Asia (EA), Economies in Transition (ET), Japan and
Korea (JK), Latin America and Caribbean (LA), Middle East and North Africa (MN), Rest of North America (NA), Oceania (OC), South Asia (SA), South-East Asia and Pacific
(SE), Sub-Saharan Africa (SS), the United States (US), andWestern Europe (WE). The regions are sorted from the least to themost affluent region according to per capita GDP
(from left to right).
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Supplementary data Tables 7 and 8. We then compare the GTAP-E eco-
nomic results with the actual year-on-year GDP change data for the first
COVID-19 period (i.e., from 2019 to 2020, for the first quarter in China
and the second quarter in other regions), which roughly reflect the effect
of COVID-19 in the absence of economic stimuli (Supplementary Fig. 4).
Overall, the simulated GDP declines are consistent with the actual statistics,
including the global GDP decline (−10.9 % versus −11.0 %) and the re-
spective inter-regional differences. The global difference is within the
uncertainty caused by model parameters. Furthermore, GTAP-E simulates
6

the GDP change between equilibriums, whereas the actual GDP data may
reflect a transitional economic change from 2019 to 2020.

3.2. Changes in emissions and pollution

Under the persisting COVID-like pandemic, anthropogenic air pollutant
emissions change greatly, but the sign and magnitude of emission changes
differ across the pollutants and regions (Fig. 2b–f). For NH3, SO2 and NOx,
the global total emissions decrease by 9.5% (5.6million tons), 15.8% (13.6
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million tons) and 21.6 % (25.6 million tons), respectively. Less affluent re-
gions tend to exhibit greater fractional emission reductions thanmore afflu-
ent regions do for SO2 and NOx, although with notable data scatter. In
particular, South Asia and Sub-Sahara Africa exhibit SO2 emission reduc-
tions by 34.3 % and 19.3 %, respectively, whereas the United States only
has a weak decline (3.1%) (Fig. 2f). This is because SO2 andNOx emissions
are mainly coming from industry (for both) and transportation (for NOx),
which experience greater declines in less affluent regions. Transportation
emissions of NOx decrease by 34.7 % globally and by up to 64.0 % in
South Asia and 48.4 % in Latin America and Caribbean. The NH3 emission
result is broadly consistent with the GDP result, because the pollutant is
emitted mainly from the agricultural sectors directly producing GDP
(Fig. 2d). For NH3, SO2 and NOx, residential fuel use is a minor emission
source, and residential emission changes only have small effects on their
total emissions. Our estimated emission changes are consistent with previ-
ous studies on COVID-19 (Keller et al., 2021; Bauwens et al., 2020; Zheng
et al., 2020; Venter et al., 2020) – for example, Chinese NOx emissions de-
crease by 20.4 % here and by about 20 % from the first quarter of 2019 to
the same time of 2020 in ref. (Zheng et al., 2020); and global NOx emissions
decrease by 21.6%here, comparable to the 18% reduction in ambient con-
centration in ref. (Keller et al., 2021).

In contrast, global total anthropogenic POA emission increases negligi-
bly (by 0.1 % or 0.02 million tons) in response to the pandemic (Fig. 2c).
This is because the reductions in industrial and transportation emissions
are offset by the increases in residential emissions. As a major source of
POA, residential emissions increase in part because residential activities ex-
hibit a global average increase of 7.2 % due to longer stay-at-home time.
Furthermore, the estimated switch of residential energy use from cleaner
to cheaper but more polluting energy types associated with reduced afflu-
ence is notable in less affluent regions. For example, in Middle East and
North Africa and Latin America and Caribbean, residential electricity use
decreases by 17 % and 18 %, respectively, whereas residential biomass in-
creases by 26%and 4.1% in themeantime. This affluence-dependent emis-
sion estimate is supported by the analysis of historical household energy
use – as per capita GDP increases, consumption of cheap but most polluting
fuel (biomass) decreases while cleaner but expensive energy (electricity
and gas) increases in general (Supplementary Fig. 2). Regionally, Middle
East and North Africa and East Asia exhibit the greatest fractional decreases
of total POA emissions (14.4 % and 12.3 %, respectively) due to substantial
declines in industrial and transportation activities. In contrast, China ex-
hibits the greatest fractional POA emission rise by 3.7 %, followed by
Rest of North America (mainly Canada, 3.6 %).

BC emissions exhibit a global average reduction by 8.8 % in response to
the pandemic, but with large regional diversity. Globally, the increase in
residential emissions only partially offset the decreases in industrial
and transportation emissions. The residential contribution to total BC
emission is dominant in least affluent regions, whereas industry is the
main source for more affluent regions (Fig. 2b). The residential contri-
bution is greatest (83.9 %) in Sub-Sahara Africa, which is also the only
region exhibiting a significant increase in total BC emission by 13.8 %.
In contrast, BC emissions decrease most in the Middle East and North
Africa (by 21.0 %), followed by Latin America and Caribbean (17.3 %)
and South Asia (13.1 %).

We then estimate the changes in ambient PM2.5 concentrations caused
by the persisting COVID-like pandemic. Fig. 3 shows that BC concentrations
increase slightly over Sub-Saharan Africa but decrease at other places as a
result of the pandemic-induced changes in pollutant emissions. By compar-
ison, POA concentrations increase slightly over several Asian regions and
North America, but with declines over other areas. SIOA concentrations de-
crease greatly worldwide with the most notable reductions in absolute
value over China and India. Summing over the changes in BC, POA and
SIOA, the changes in total PM2.5 are negative with a global average decline
by 2.3 μg/m3 over regions with population densities exceeding 100/km2.
Fig. 2g further shows the large fractional decline in population-weighted
global average PM2.5 (sum of BC, POA and SIOA) concentrations (13.6 %)
with substantial regional differences (from 4.9 % to 17.4 %).
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We compare our PM2.5 concentration results with the actual year-on-
year change for the first COVID-19 period over the 13 regions. The actual
data are taken as the average of values from the World Air Quality Index
project (The World Air Quality Index Project (WAQI), 2022) (after conver-
sion from daily medium values of Air Quality Index to concentrations) and
the satellite-derived PM2.5 dataset (van Donkelaar et al., 2021). Supplemen-
tary Fig. 5 shows that our estimated PM2.5 concentration changes for the 13
regions are consistent with those shown in the actual data with slope of 1.2
and R2 of 0.86, in support of the credibility of our estimated PM2.5 changes.

Fig. 2h further shows the changes in PM2.5-related (sum of BC, POA and
SIOA) premature mortality caused by the persisting COVID-like pandemic.
Globally, the cases of premature death decrease by 0.41 [95 % CI:
0.34–0.47] million, with a relative change by −9.5 %. The number of
cases is equivalent to 80 % of the mortality cases recorded to be directly
caused by COVID-19 in the first COVID period (World Health
Organization (WHO), 2022). Regional differences in mortality changes
are also substantial. South Asia exhibits the largest number of mortality re-
duction by 0.17 million (12.1 %), followed by China (0.11 million, 7.6 %)
and Western Europe (0.03 million, 7.4 %). Latin America exhibits the
greatest fractional mortality reduction by 15.0 % while the United States
experiences the smallest fractional reduction by 4.2 %.

3.3. Environmental inequality

Contrasting the regional changes in GDP and population-weighted PM2.5

concentrations or related mortality reveals exacerbated environmental in-
equality as a result of the pandemic. The blue dots in Fig. 4 show that the frac-
tional changes in PM2.5 concentrations (sum of BC, POA and SIOA) and
associated mortality are notably larger than the changes in GDP for Oceania,
Japan and Korea, and Middle East and North Africa. In contrast, the opposite
result is true for South Asia, Sub-Sahara Africa, the United States and North
America. South Asia and Sub-Sahara Africa, the least affluent of the 13 re-
gions, suffer 24.8 % and 18.9 % losses respectively in GDP but with much
weaker extents of pollution-associated mortality alleviation (12.1 % and 7.5
%). This is mainly caused by the changes in residential energy use.

The global population-weighted average PM2.5 concentration (sum of
BC, POA and SIOA) is reduced by the pandemic by 2.6 μg/m3, as a result
of the reduction associated with non-residential sectors (3.1 μg/m3) partly
compensated by the enhancement associated with the residential sector
(0.5 μg/m3). Thus, including the residential response increases the global
PM2.5-related mortality by 3.5 % (from−13.0 % to−9.5 %; orange versus
blue dots in Fig. 4). Of this global mortality change, switch to more pollut-
ing household energy types contributes 37 %, with the remaining contrib-
uted by longer stay-at-home time requiring more household energy
consumption. Affluent regions exhibit small fractional changes in mortality
when the residential response is included, like Oceania (0.7 %) and the
United States (1.3 %). In contrast, less affluent regions exhibit substantial
mortality enhancements with the inclusion of residential response, espe-
cially for Sub-Saharan Africa (6.4 %) and South Asia (5.6 %). These results
are because in less affluent regions, as compared to more affluent ones, res-
idential emissions are a more important pollution source and are subject to
more significant changes by the pandemic. Thus the changes in residential
emissions largely determine the extent of economic-pollution consistency
in their responses to the pandemic.

3.4. Call to mitigate inequality

Our results show that considering the full chain of changes in economy,
affluence and household energy use in response to a persisting pandemic,
the fractional decline in PM2.5-related (sum of BC, POA and SIOA)mortality
is close to the GDP decline at the global level. Regionally, however, the
economic-environmental contrast is exacerbated, as a few least affluent re-
gions suffer the largest fractional economic losses with no comparable
levels of alleviation in pollution and related mortality. This is because
affluence-dependent residential pollution increases to partly offset the ef-
fect of emission reductions in other sectors.



Fig. 3.Pollution impacts of pandemic. The simulated geographical distributions of changes in BC (a), POA (b), SIOA (c) and total PM2.5 concentrations (d) under the persisting
COVID-like pandemic. The color scales are nonlinear.
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Fig. 4. Contrast between pandemic caused economic and pollution changes. The
figure shows the percentage changes in regional population-weighted PM2.5

concentrations and related premature mortality as a function of the percentage
changes in GDP caused by the COVID-like pandemic. Blue dots denote the
regional results including the changes in all anthropogenic emission sectors, and
orange dots denote the results excluding the changes in the residential sector. The
size of each dot denotes the magnitude of per capita GDP in each region. The dots
with a darker color and thicker border denote the global values. The gray arrows
show the differences between the percentage changes including and excluding the
residential sector for the United States, Sub-Saharan Africa and global average. Thir-
teen regions include China (CH), rest of East Asia (EA), Economies in Transition
(ET), Japan and Korea (JK), Latin America and Caribbean (LA), Middle East and
North Africa (MN), rest of North America (NA), Oceania (OC), South Asia (SA),
South-East Asia and Pacific (SE), Sub-Saharan Africa (SS), the United States (US),
and Western Europe (WE). The gray dotted line represents the 1:1 line.
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This study does not include the effect of fiscal stimulus. Affluent regions
have the capability to implement large-scale fiscal stimuli, which reduce
the economic and pollution changes caused by the pandemic. The least af-
fluent regions are also least capable to implement strongfiscal stimuli. Thus
including the effect of fiscal stimuli (in affluent regions) would increase the
calculated inter-regional economic inequality. Furthermore, this study does
not consider indoor PM2.5 pollution, which would further worsen the inter-
regional health inequality. This is because indoor pollution from residential
fuel combustion can be a larger health threat than ambient pollution in less
affluent regions (Shen et al., 2021; Yun et al., 2020; Mbandi, 2020; Giwa
et al., 2019), and longer time to stay at home and switch to more polluting
household fuel types would mean enhanced exposure to indoor pollution
(Shen et al., 2021; Li et al., 2021).

The key to reducing the pandemic-caused inter-regional environmental
inequality and protecting lives worldwide lies in swift lockdown measures
to minimize infection spread, timely invention and taking of effective
9

vaccines, and international financial, technological and vaccine aids to
least affluent regions. In addition to local efforts, time-efficient interna-
tional aids are crucial, as the least affluent regions have already struggled
to afford clean energy even without the pandemic (British Petroleum
Company, 2019; International Energy Agency (IEA), 2016), and the pan-
demic further worsens the situation (Mbandi, 2020). For example, electric-
ity is not available for about 600 million households and over 900 million
rely heavily on polluting energy for cooking in Africa (IEA, 2019). Aids to
mitigate pollution in these regions will also have global health benefits by
reducing the atmospheric transport of pollutants (Chen et al., 2021;
Zhang et al., 2017).
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